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Abstract

Most diffraction tomography (DT) algorithms use a homogmrseGreen function (GF)
regardless of the medium being imaged. This choice is ysoadtivated by practical consid-
erations: analytic inversions in standard geometriestéSem, spherical, etc.) are significantly
simplified by the use of a homogeneous GF, estimating a namegeneous GF can be very
difficult, as can incorporating a non-homogeneous GF irdadard DT algorithms. Devaney
has circumvented these issues by developing a purely ncah&il inversion algorithm [1]
which is independent of measurement system geometry, nuohfrequencies used in the re-
construction, and GF. A planar multilayer GF has been deesldor use in Devaney'’s “Hilbert
space” algorithm and used to image non-invasively a flaw ilmagr multilayer medium using
data collected from an ultrasonic measurement system. dtiaentkre collected in a multistatic
method with no beamforming: all focusing through the maitdr was performed mathemati-
cally “after-the-fact,” that is after the data were colbstt
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1 Introduction

Most diffraction tomography (DT) algorithms use a homogrreGreen function (GF) regardless
of the medium being imaged. This choice is motivated by practonsiderations: analytic in-
versions in “nice” (planar, circular, spherical, etc.) gesries are significantly simplified by the
use of a homogeneous GF which has convenient decomposititinsse coordinate systems, and,
estimating a non-homogeneous GF and incorporating it itatodsard DT algorithms can be very
difficult if not mathematically impossible. Devaney hascaimvented these issues by developing
a purely numerical DT inversion algorithm [1] which is ind#mlent of measurement system ge-
ometry, number of frequencies used in the reconstructiod,@F. It is based upon a projection
operator interpretation of the forward scattering intégrae projection constitutes a Hilbert space
mapping from acontinuous object spade adiscrete measurement spacehe algorithm is de-
scribed in detail in [1], and [2] where it was shown to be sgsbd in reconstructing synthetic data
from an annular outwardly-directed measurement system.

Here, we apply the Hilbert space algorithm to a planar naylelt domain with the goal of
inverting a multistatic ultrasonic data set. To this end,degeloped a scalar planar multilayer
GF. Our GF solution is not new. Complete and detailed plandtilayer GF solutions have been
previously derived for many applications [3, 4, 5, 6]. We dx,rhowever, require the accuracy
of these solutions since our reconstructions are limitedneasurement noise and limited data.
Additionally, we explicitly filter out evanescent field infoation since it is, for practical purposes,
unusable at the propagation dimensions of our problem. Weglaire a model which accounts
for the reverberation and multipath scattering within aetineen layers. We also require com-
putational speed since our multilayer GF must be computeéatedly over all combinations of
transducers and frequencies.

The combination of the Hilbert space algorithm with the plamultilayer GF has successfully
imaged a hole, the “flaw,” in the copper layer of an aluminwpfeer multilayer. The data were
collected using a 5 MHz linear ultrasonic array in a multistenethod whereby each transmitter
sequentially launched the primary field into the medium &edstcattered field was measured at all
receivers. No beamforming was performed during data didlecwe accounted for the multilayer
nature of the medium, mathematically through the multitay€, “after-the-fact,” that is after the
data were collected.

In most non-destructive evaluation (NDE) cases, prior Kedge of the internal structure of a
part under evaluation is known via design or manufactunpeggication. Thus, for NDE purposes,
it is reasonable that the individual medium layer materralpgrties and specifications are well
known and understood. In this case, the inverse wave imagiaged to identify deviations from
how the medium was assembled or built (the “as built” verBes‘as designed” problem).

We review the derivation of the Hilbert space inverse wagei@lhm in the next section. We
summarize the development of our planar multilayer Greactfan in Section 3. The results are
presented in Section 4 for simulated and experimental @t$as the aluminum/copper multilayer.
Our conclusions are in Section 5.



2 Hilbert Space Inverse Wave Algorithm

The Hilbert space inverse wave (HSIW) algorithm [1, 2] iptets the forward scattering operator

as a mapping from a continuous, real, object space to a thstreasurement space consisting of

the discrete transceiver locations and, optionally, tlseréite frequencies at which the measured

data are collected. We summarize the HSIW algorithm hetejld@re presented in the references.
The forward scattering process is described by

URL Ry w) = KEw) [ dr Go(Ry,r,w) or) v(r Riw), (1)
where
'R Rw) s thescatteredield measured at the receiver resulting from the
nth source;
U(r, R w) is thetotal field resulting from thextN source;
R} is the receiver location;
R! is the source location;
w is temporal frequency;
ko(w) is the background wavenumber definedves;
Vo is the background velocity;
Go(R] 1 w) is the homogeneous background Green function;
o(r) is the object function to be imaged, defined 84r)/k?%) — 1, and,;
k(r) is the object function wavenumber.

The total field appearing under the integral of Eqn. 1 is thra sfithe incident and scattered
fields. In many instances it is possible to replace the tatld by the incident field using the Born
approximation. This permits the development of a linearimeersion of the integral. We assume
the incident field is due to a point source locate®at

(R, w) = Pw)G(r,R,w), (@)

whereP(w) is the spectrum of the incident pulse. Substituting Eqnt@ Egn. 1, we arrive at our
forward, distorted Born approximation, scattering model:

sBcat(R;wRi7wl) = P(wl) kg(wl) /dI‘ GO(R:nvruwl) O(I') G<r7R¢wwl)7 (3)

where theB superscript indicates the approximation. As all the measdata will be discretized
on a digital computer, we have explicitly discretized thegrencies at which the data are collected
viaw, wherel =0, 1,---, Ny — 1 and N, is the number of frequencies in the pulse band width.

The HSIW interprets Eqn. 3 as a mapping froracatinuous object spade adiscrete mea-
surement spacel' he object space is the physieadpace of the object function. The measurement
space consists of the discrete transducer locations argbtahfrequencies at which the scattered
data are measured. The scattering operator projects teetanjto the measurement space. To for-
mulate explicitly Eqn. 3 as a projection operator, we defireeforward propagation or projection
kernel as

II*(r) = P(w)kj(w) Go(R],, r,w) G(r, R}, w), (4)



wherell(r) isa.J = (Nsrc x Nrcv x Ny) element column vectofysrcis the number of sources,
and Nyrcy is the number of receivers. Mathematically, the projeci®represented as an inner
product between the object function and the kernel via,

/ dr I (r) o(r) = (II,0), (5)

where D is a J element column vector of measured data values at each saemver, and
frequency combination. Symbolically, we define the forwsedttering operatofs, as

/ dr I (r) []. (6)

Using the mathematics of linear algebra, it is shown [1, 8]itiverse of Eqgn. 6 which reconstructs
the object function is

7 (r) uju}D, (7)

where ther; andu; are the singular values and measurement space singularsvetf, respec-
tively. Explicitly, these are defined by the normal equagiohthe singular system:

Kuj(r) = ojuy, (8)
Klu; = ojv(r), 9

where theu; span the measured data space, and the span the object space. The measurement
system is inherently ill-conditioned due to the limited gpee of the measurement system which
only measures part of the scattered field, and due to the fabe @vanescent field information.
Thus, a subset of the singular values must be rejected: ey no useful object information
and must not be used in the reconstruction of Eqn. 7. A detisiost be made on the number of
singular values/vectors to use. We have chosen to ugssteRank Mipproximation. We compute
the ratio

R(N) = 3 : (10)

where we assume the singular values are arranged from strtallargesto? < o7 < --- < o3 _,.
Plotting R(N), we graphically identify the point at which the functionrésato rise rapidly. The
index of the singular value at which this occurs, we labe/aswith this value determined, our
final reconstruction is

—_

1
Z — 117(r) wujD. (11)
=Jo ]
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Our experience reconstructing both simulated and expetiig collected scattered field data
have shown that this criterion works consistently well.

The HSIW algorithm versatility lies in its ability to form censtructions using any geometrical
transducer configuration and any number of frequenciesditires only the Green functions of
Eqgn. 4. For the current case of interest, we t&kér, r’, w) to be the free space Green function,

o) LHY (ko(w)r — ) 2D,
Go(r,v',w) = (12)
1 eikzo(w)|r—r’\ 3D,

4A7|r—r/|

which is used to propagate a field from a point within the media the receiver. Fo&(r, 1, w),
we use a multilayer Green function which permits us to prapag field from a transducer through
the layers to a point within the medium. This enables us tagdafter-the-fact”, that is, after
the data have been collected without the use of beam fornoimdargets within the multilayer
structure. We develop our Green function in the next section

3 Mathematical Statement of the Planar Multilayer Problem

Consider the planar multilayer geometry of Figure 1. Eagkias identified by its bottom bound-
ary, z;. The top most layer, layer 0, is defined by, We assume the source is located on or
above the top layer. The wavenumber associated with eaehigy;(w) = v;/w whereuv, is the
wave field propagation velocity andthe temporal radial frequency. We wish to solve the Green
function equation,

{Vz + kz(z)} G(r,v,w) = —i(r—1'), (13)
where the depth-dependent wavenumbér), is given by
ko(w) z <z
ki(w) 20<z2< 2z
B(z) = 5 (14)
kr—o(w) 23 <2< 209
kr—1(w) Z > ZL-2,

the source location is' < z, (that is, located on or above the top layer), &ia,r’,w) is the
planar multilayer Green function to be determined (for Hastion, thes dependence is implicit).
Following a method similar to Chapter 4 of [3], we separatedbordinate system infgdanarand
perpendicularromponentsr = (r,, z) andr’ = (r/, '), and perform a planar Fourier transform
(PFT) of Egn. 13 along the planar,, coordinate using the transform pair,

ki) = [driu(ez) et (15)

W(ry,z) = ﬁ/dkL i(kl,z) elkLTL (16)
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wheren is the dimensionality of the problem, to achieve:
[af + k*(2) — |kl|2} Glky,zr), 2iw) = —e *Ti§(z - 2)). (17)

Equation 17 is a one dimensional ordinary differential ¢iguiain z. We simplify the notation by
defining

v = /fl(_z)2—k2¢a (18)
w(r)) = e (19)

where thez—dependence in, is implicit. With these definitions, the equation to be sdlveads
(2 +97] Gk, 20, 2w) = w(r!) o(z—2). (20)

In Sections 3.1 through 3.3, we develop the solution Egn.dllowing a technique similar to
that used by DiNapoli and Deavenport [4] although we use gl&@artesian rather than polar
coordinates. The solution is derived analytically but cated numerically. A numerical inverse
PFT is used comput@(r,r’,w) from G(k_, z; ', Z/;w). We develop the full solution by dividing
the problem into three parts:

1. We solve the problem of two layers with a source in Sectidn 3
2. We develop the solution between two arbitrary source4fmgers in Section 3.2;

3. We combine these two solutions in Section 3.3 to achiexéuthmultilayer solution.

3.1 Two Layers With A Source
The solution to Eqgn. 20 in the top two layers is

A_(ky,2)e 0= z < 2,

Gk, zr, 2 w) = As(ky,2)e% + Ry(ky)e M0 2/ < 2 < 2 (21)

Ty(k,)e™m® + Ry(k)e "= z > 2,

whereA_(k,,2') and A-(k,,2’) are the point source field coefficient8y(k, ) is the layer O
reflection coefficient, andl’ (k) and R, (k) are the layer 1 transmission and reflection coeffi-
cients, respectively?; (k) is included for completeness, were therdytwo layers,R; (k) = 0.
Equation 21 has five coefficients to be determinéd(k_, '), A~ (k., 2’), Ro(ky), T1(k, ) and
R;1(k.)). We impose field boundary conditions (BC) about the souscation and:, interface to
solve for the coefficients. The conditions are

e Continuity ofG(k,, z; 1/, 2/; w) about the source location= =/,

e Step discontinuity 0b,G (k. , z; 1’|, 2’; w) about the source location= 2/,



e Continuity ofG(k_ , z; 1’|, 2’;w) at the layer interface; = z;
e Continuity of0,G(k, z; 1/, , 2/;w) at the layer interface; = z.

Applying the BC and simplifying, we arrive at the followingatmix relationship between the trans-
mission and reflection coefficients of each layer:

v = Ul_l(zo)Uo(Zo)Um (22)
where
r ﬁw(rl)ei'yo(zo—%) e~ 11020
UO(ZO) = _ ) (23)
| S Jemlas) e
[ 1
Vg = s (24)
| Ro(k1)
r eimz 6—i’YlZ
Ul(z) = _ _ , (25)
_,ylerylz _,yle—rylz
[ Ti(k1)
v = . (26)
| Ri(ky)

Thus, given the boundary conditions, at the top layer (layer 0), we may solve for the layer 1
coefficients via Eqn. 22.

3.2 Solution Between Two Source-Free Layers

In a source-free region, Eqn. 20, reduces to

(02 + 97| Gkp, zir) 2w) = 0. (27)
The solution is
) Ti(ky)e* + Ry(ky )e~n? 21 <2<z
Gk, zr, 2w = (28)
T (kp)em+ + Ry (ke 1% 2 < 2 < 2144,

Imposing continuity in the field and its derivative (there@ssource within this region), we arrive
at the relationship between the layer coefficients:

Vg1 = Ullll(zl)Ul(Zl)Ub (29)

where we have used the definitions of Eqns 25 and 26. Egn. 28 g a method for computing
the transmission and reflection coefficients for the 1)th layer given those in thah layer. In the
next section we combine the results from this and the prevseation to derive the full, multilayer
Green function.



3.3 Full Multilayer Solution

Let there bel layers labeled fron0, L — 1] as shown in Figure 1. The full multilayer solution
Green function which is a solution to Eqn. 20 is

A_(ky,2")e 0z z < 2,
A (kp,2)e* + Ry(ky)e 102 2 <z < 2z,
Ty(ky)e™m® + Ry(ky)e "= 20 < 2 < 2,

G(klvz; rlj_uzl;w) = . . (30)
TQ(kJ_)6wQZ + RQ(kJ_)6_W2Z 21 < 2 < 29,
Tra(kp)e=1*+ Ry q(ky)e =12 2>z .

The coefficientsA- (k. , 2'), A~ (ky,2"), {Ri(k.)}!, and{Ti(k,)}/,, are to be determined.
Ro(k,) andT;_;(k,) are set by the top and bottom layer boundary conditions (B@psed on
Eqgn. 20. Those BC are

1
vy = ] for the top layer, (31)

Ro(k,)

[ Tpq(ky) ]
for an infinite or non-reflecting bottom layer

0
V-1 = ) ; (32)
Tr1(ky)

for a perfectly reflecting bottom layer

| To-a(ky) |

The matching conditions for each layer are

Uo(Z())’UO = Ul(Z(])’Ul
Ul(Zl)Ul = U2(21)U2
Us(22) vy = Us(22)v3 (33)
UL—2(ZL—2)UL—2 = UL—1(ZL—2)UL—1

Eliminating all but the top and bottom coefficients of Eqr3, ®e find

v = Uy (20)U1(20)U1  (20)Ua(21)Us  (22)Us(22) - - Up Ly (20-2)Un-1(22-2)vr 1. (34)



We simplify the notation by defining
H = Uy (20)Ur(20)U1 H(21)Us(20)Us H(22)Us(22) - - - U2y (22-2) U1 (20-2),  (35)
and expressing Eqn. 34 as
vg = Huvp_i. (36)

Solving Eqn. 36 forky(k, ) and7},_; determines, andv;_;. The remaining coefficients are then
calculated using Eqn. 29.

3.3.1 Solution For Infinite Bottom Layer

For an infinite bottom layer there is no reflection. Thus weiget; (k, ) = 0, reducing Eqn. 36 to

1 Hi1t Hio Tr-1(ky)
= , (37)
RO(kL) Har Hao 0
—————
Vo H UL—1
which yields
Ta(ky) = - (38)
L—1 ue - Hllu
H21
Ry(k = — 39
o(ky) o (39)
as solution.

3.3.2 Solution For Perfectly Reflecting Bottom Layer

For a perfectly reflecting bottom layer, the reflection armhsmission coefficients are identical.
We setR; (k) = T._1(k,), reducing Egn. 36 to

1 Hii Hio Tr-1(ky)
— , (40)
Ry(k,) Hoi Hoo Tr-1(ky)
which yields
Tpalky) = —— (41)
L—1 1 - H11+H12’
Ha1 + Hao
Ro(k = = 42
o(k1) o+ Hos (42)
as solution.



3.4 Practical Considerations for Evanescent Fields

In anticipation of working with multilayer parts whose laythickness are many wavelengths, we
explicitly filter out the evanescent field information priorperforming an inverse planar Fourier
transform of Eqn. 30. Explicitly, we compute

Grp(r,r,w) = Fopp {é(kbz;rl,z’;w)hl(kl)}, (43)

whereh;(k, ) is a depth-dependent Hanning window whose width is propoali to thek;(w)
propagating frequency cut-off of ti& layer, 5o {-} is the inverse planar Fourier transform of
Eqgn. 16, and the “LP” subscript on the Green function indisdhat the Green function has been
low-pass filtered. Referring to Eqn. 4, we set

G(I‘, Ri, w) = GLP(I', Ri, w).

This is motivated by the exponentially decaying nature efélanescent field which, when back
propagated in the presence of noise (measurement and aipeBsults in instabilities. Addition-
ally, as the field propagates from the source down througbessive layers, we do not propagate
fields that have been cut-off in higher layers to subsequsm@rs, even if they can support those
spatial field frequencies. Explicitly, if

kl(w) > k:l_l(w),

we only propagate frequencies upka(w) for all subsequent layers until a layer with a lower
cut-off is encountered.

In Section 2, we reviewed the inversion algorithm. In Set8pwe summarized the derivation
of the planar multilayer Green function to be used in the s\ algorithm. In the following
sections, we apply our planar multilayer inversion aldoritto simulated and experimental data.

4 Experimental Setup & Full Wave Simulation

The experimental setup consisted of a 32 element 5 MHz oltiasrray. The transducers had a
1 mm pitch and served as both sources and receivers. The redakaia were fully multistatic in
that each source successively launched the incident fieddlie medium and the scattered field
was recorded at all receivers. No beamforming was perforhueithg the data collection, nor did
we account for the multilayer structure of the medium.

The part under evaluation was an aluminum block epoxy bomaeo a copper block. The
aluminum layer was 13 mm thick; the copper layer was 9 mm thictdefect” in the form of a 1
mm radius hole was drilled into the middle of the copper lay&e experimental aluminum/copper
multilayer setup is pictured in Figure 2.

In conjunction with the experiment, we performed a two-dagienal finite-difference time-
domain (FDTD) simulation of the setup using E3D, an expkf3D elastic wave propagation
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code developed at Lawrence Livermore National Laboraténg] 9, 10, 11, 12]. The code sim-
ulates full wave scattering and requires as inputs a lodgiad velocity distribution, a transverse
velocity distribution, and a density distribution.

The FDTD simulation domain, shown in Figure 3, consistedanir flayers: air, aluminum,
copper, air. The physical parameters assigned to alumouoppér layers, required by E3D, are
shown in the graphic. An air-filled hole with a radius of 1 mmswaserted 4 mm below the
aluminum/copper interface.

Both the simulation and experiment used a Gaussian windgwedas incident pulse:

p(t) = sin(wot) e_t2/(2"2), (44)

wherew, = 27 fy, 0 = Neye/wo, and Ny, is the number of cycles in the pulse. We uskd5
MHz and 5 cycles. The pulse spectrum magnitude is shown ur€ig for both the simulated and
experimental data sets. The highlighted regions of theasustiow the 58 discrete frequencies used
in the reconstructions. As discussed in [2], the Hilbertgpalgorithm is computationally intensive
and demanding upon computer storage. Thus, we were unalde tbe full pass band of the pulse
spectrum in our reconstructions. The Green function coegptdr the HSIW algorithm consisted
of an air/aluminum/copper/air multilayer.

In processing both the experimental and simulated data,iseevkred that shear (transverse)
waves which are not modeled in the theory of Sections 2 andrBjgted the reconstructions when
we used the entire 32 element aperture. This was causedebgriating shear waves at receivers
distant from the source. In order to filter out these slowevimgpshear waves, we processed the
data using successive, over-lappsubp-aperturesather than théull aperture

In full aperture processing (refer to Figure 5 (a)), the teerees measured atl receivers are
used for each transmitter. Scattered field time series Seestaivers farther removed from the
transmitter, contained both the pressure (longitudinalyes and later arriving shear waves. As
the latter were not included in the models, they corrupteddétonstructions.

In sub-aperture processing, we formed sub-arrays comgisfia central transmitter/receiver
surrounded by equal numbers of receivers as shown in Fig(lsg By sequentially indexing the
sub-array over to the next transmitter/receiver, the emtata set was processed. In this manner,
we succeeded in spatially reducing the shear wave corrupfithe reconstruction algorithm. We
wish to emphasize that the sub-aperture processing wasrped after the data were collected.

The reconstructions are presented in Figures 6 and 7 fortihdated and experimental data
sets, respectively. The top plot of Figure 6 (a) shows theé Rask N curve of Egn. 10 used for
thresholding the singular values; the bottom shows theaasingular value distribution. Using
the Best RankV criterion, we determined the top 10% of the singular valiresifd be used in the
reconstruction in Figure 6 (b). The flaw is clearly visiblelaorrectly located.

Figure 7 shows the results for the experimental data setidrcase, the top 13% of the singular
values were used. The reconstruction of Figure 7 showslextdébcalization and contrast of the
flaw.
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5 Conclusions

We developed a scalar planar multilayer Green function $erin the Hilbert space inverse wave
tomographic algorithm and used the latter to image a flaw ialaminum/copper multilayer. We
demonstrated our ability to focus successfully throughtldtilayer medium “after-the-fact,” that
is after the data have been collected in a multistatic mawiteout beamforming or taking into
account, during data collection, the multilayer naturehef part.

In most non-destructive evaluation (NDE) cases, prior Kedge of the integral structure of a
part under evaluation is known via blueprints or other maatufring specification. Thus, for NDE
purposes, it is reasonable that the individual medium layaterial properties and specifications
are well known and understood. In this case, the inverse inaaging is used to identify deviations
from how the medium was assembled or built. This is the “ak*beersus the “as-designed”
problem. This algorithm can also be used to determine aiw#t ttee aging of parts. We hope to
develop spherical and cylindrical multilayer Green fuans for other NDE applications.
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Figure 1:Multilayer geometry in the planar Fourier domain. There e{t@f:‘ol layers. The source
is located at’ < z,.
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for the photograph and was not present during the data cttec
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Figure 3:Air/Aluminum/Copper/Air multilayer simulation geometry
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Figure 4: Spectrum of 5 MHz, 5 cycle, Gaussian windowed sine spectragnitnde used in (a)
the FDTD simulation; and (b) the experiment. The highlighparts of the curves show the 58
discrete frequencies used in the reconstructions.
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Figure 5: Full aperture and sub-aperture processing. (a) In full ajoee processing, the time

series measured at all receivers are processed togethgin(sub-aperture processing, the data
from a shifting sub-array consisting of a transmitter/re@ surrounded by an equal number of

receivers, are processed together.
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Figure 6:Reconstruction of simulated data set. (a) The top plot shbev8est RankvV approxi-
mation of Eqn. 10. The dashed line shows the threshold betoehwone of the singular values
were used in the reconstruction of Egn. 11. The bottom plmvstthe actual singular value distri-
bution. (b) The reconstruction. The circle superposed entflage shows the true location of the
flaw. The\ metric is the wavelength of the field in the top, aluminumeitat f, =5 MHz.
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Figure 7: Reconstruction of experimental data set. (a) The top plotwshthe Best Rank ap-
proximation of Eqn. 10. The dashed line shows the threshelloMbwhich none of the singular
values were used in the reconstruction of Eqn. 11. The bgitohshows the actual singular value
distribution. (b) The reconstruction. The circle superpd®n the image shows the approximate
location of the flaw. Tha metric is the wavelength of the field in the top, aluminungtay f, =5
MHz.

20



